Dictionary Definition
sulfur n : an abundant tasteless odorless
multivalent nonmetallic element; best known in yellow crystals;
occurs in many sulphide and sulphate minerals and even in native
form (especially in volcanic regions) [syn: S, sulphur, atomic
number 16] v : treat with sulphur in order to preserve; "These
dried fruits are sulphured" [syn: sulphur]
User Contributed Dictionary
Pronunciation
- Hyphenation sul·fur
Noun
- A chemical element (symbol S) with an atomic number of 16.
- A yellowish green colour, like that of sulfur.
- sulfur colour:
Synonyms
- (element): brimstone (archaic, not in technical usage)
Derived terms
- desulfur, desulphur
- disulfur, disulphur
- flowers of sulfur, flowers of sulphur
- hepar sulphuris
- hydrodesulfurization, hydrohydrodesulphurisation, hydrohydrodesulphurization
- iron-sulfur cluster, iron-sulphur cluster
- potash of sulfur, potash of sulphur
- sulf-, sulfo-, sulph-, sulpho-
- sulfa-, sulpha-
- sulfonium, sulphonium
- sulfur-32
- sulfur-33
- sulfur-34
- sulfur-35
- sulfur-36
- sulfurate, sulphurate
- sulfur acid, sulphur acid
- sulfur alcohol, sulphur alcohol
- sulfur bacterium, sulphur bacterium
- sulfur bath, sulphur bath
- sulfur-bottom, sulphur-bottom
- sulfur-bottom whale, sulphur-bottom whale
- sulfur butterfly, sulphur butterfly
- sulfur cast, sulphur cast
- sulfur cockatoo, sulphur cockatoo
- sulfur-color, sulphur-colour
- sulfur-colored, sulphur-coloured
- sulphur cone
- sulfur-crested cockatoo, sulphur-crested cockatoo
- sulfur cycle, sulphur cycle
- sulfur dibromide, sulphur dibromide
- sulfur dioxide, sulphur dioxide
- sulfured, sulphured
- sulphur-headed cauliflower
- sulfur ether, sulphur ether
- sulfuretum, sulphuretum
- sulfur fungus, sulphur fungus
- sulfur hexafluoride, sulphur hexafluoride
- sulfuric, sulphuric
- sulfuriferous, sulphuriferous
- sulfur impression, sulphur impression
- sulfuring, sulphuring
- sulfurity, sulphurity
- sulfur match, sulphur match
- sulfur monoxide, sulphur monoxide
- sulphur of ivy
- sulfur ore, sulphur ore
- sulfur oxide, sulphur oxide
- sulfur parakeet, sulphur parakeet
- sulfur pearl, sulphur pearl
- sulfur print, sulphur print
- sulfur pyrites, sulphur pyrites
- sulfur rain, sulphur rain
- sulfur salt, sulphur salt
- sulfur shower, sulphur shower
- sulfur soap, sulphur soap
- sulfur spring, sulphur spring
- sulfur tree, sulphur tree
- sulfur trioxide, sulphur trioxide
- sulfur tuft, sulphur tuft
- sulphur vivum
- sulfur weed, sulphur weed
- sulfur works, sulphur works
- sulfurwort, sulphurwort
- sulfur yellow, sulphur yellow
- sulfury, sulphury
- sulfuryl, sulphuryl
- tetrasulfur, tetrasulphur
- vegetable sulfur, vegetable sulphur
- virgin sulfur, virgin sulphur
- volcanic sulfur, volcanic sulphur
Related terms
- desulfurize, desulphurise, desulphurize
- disulfoton
- solfatara
- sulfa, sulpha
- sulfane, sulphane
- sulfatase, sulphatase
- sulfate, sulphate
- sulfated, sulphated
- sulfide, sulphide
- sulfite, sulphite
- sulfonal, sulphonal
- sulfonamide, sulphonamide
- sulfone, sulphone
- sulphureo-
- sulfureous, sulphureous
- sulfuret, sulphuret
- sulfurize, sulphurise, sulphurize
- sulfurous, sulphurous
- sulphur vivum
- sulpiride
Translations
element
- Afrikaans: swael
- Albanian: sulfur g Albanian
- Ancient Greek: θεῖον
- Arabic: (kibrí:t)
- Armenian: ծծումբ (tstsumb)
- Basque: sufrea
- Belarusian: сера
- Bosnian: sumpor
- Breton: soufr
- Bulgarian: сяра (sjára)
- CJKV Characters: 硫
- Catalan: sofre
- Chinese: 硫 (liú), 硫黄 (liú huáng)
- Cornish: sulfor g Cornish
- Croatian: sumpor
- Czech: síra
- Danish: svovl g Danish
- Dutch: zwavel
- Esperanto: sulfuro
- Estonian: väävel
- Faroese: svávul
- Finnish: rikki
- French: soufre
- Friulian: solfar
- Galician: xofre
- Georgian: გოგირდი (gogirdi)
- German: Schwefel, Sulfur
- Greek: θείο
- Hebrew: גופרית (gofrít)
- Hungarian: kén
- Icelandic: brennisteinn
- Indonesian: sulfur, belerang
- Interlingua: sulfure
- Irish: rúibh
- Italian: zolfo
- Japanese: 硫黄 (いおう, iō)
- Kashmiri: sarka
- Kazakh: куькiрт (kükirt)
- Korean: 황 (黃, hwang), 석유황 (石硫黃, seogyuhwang)
- Latin: sulfur, sulpur
- Latvian: sērs g Latvian
- Lithuanian: siera
- Luxembourgish: schwiewel
- Macedonian: сулфур (sulfur)
- Malay: sulfur, belerang
- Malayalam: ഗന്ധകം (gandhakam)
- Maltese: kubrit
- Manx: sulfur g Manx
- Maori: pungatara, pūngāwhā
- Mongolian: хүхэр
- Norwegian: svovel
- Polish: siarka
- Portuguese: enxofre
- Romanian: sulf
- Russian: сера
- Scottish Gaelic: sulfar
- Serbian: сумпор (sumpor)
- Slovak: síra
- Slovene: žveplo
- Spanish: azufre
- Swedish: svavel
- Tajik: sulfur
- Tamil: கந்தகம் (kantakam)
- Thai: (kammathan)
- Turkish: kükürt
- Ukrainian: сiрка (sírka)
- Uzbek: олтингугурт (oltingugurt)
- Vietnamese: lưu
- Volapük: sulfin
- Welsh: sylffwr
- West Frisian: swevel
colour
- French: soufre
- Japanese: 硫黄色 (いおうしょく, iō-shoku)
Translations
colour
- French: soufre
- Japanese: 硫黄色の (いおうしょくの, iō-shoku no)
Verb
- to treat with sulfur, or a sulfur compound, either to preserve or to counter agricultural pests
Translations
- Italian: solforare
External links
For etymology and more information refer to: http://elements.vanderkrogt.net/elem/s.html (A lot of the translations were taken from that site with permission from the author)See also
- acid rain
- alunite
- barite
- cinnabar
- cysteine
- dithionous acid
- Epsom salts
- galena
- gunpowder
- gypsum
- heparin
- Lawesson's reagent
- mercaptan
- methionine
- oleum
- polythionic acid
- pyrite
- sodium dithionate
- sodium dithionite
- sphalerite
- stibnite
- thi-, thio-
- thiol
- thiolate
- thionic
Latin
Noun
sulfurAlternative spellings
Extensive Definition
Sulfur or sulphur (, see
spelling below) is the chemical
element that has the atomic
number 16. It is denoted with the symbol S. It is an abundant
multivalent
non-metal.
Sulfur, in its native form, is a yellow crystalline solid. In
nature, it can be found
as the pure element and as sulfide and sulfate minerals. It is an
essential element for life and is found in two amino acids,
cysteine and methionine. Its commercial
uses are primarily in fertilizers, but it is also
widely used in gunpowder, matches, insecticides and fungicides. Elemental sulfur
crystals are commonly sought after by mineral collectors for their
brightly colored polyhedron shapes. In
nonscientific context it can also be referred to as
brimstone.
History
Sulfur (Sanskrit, sulvari; Latin sulfur or sulpur) was known in ancient times, and is referred to in the Biblical Pentateuch (Genesis).English translations of the Bible commonly
referred to sulfur as "brimstone", giving rise to the name of
'fire and
brimstone' sermons,
in which listeners are reminded of the fate of eternal damnation
that awaits the unbelieving and unrepentant. It is from this part
of the Bible that Hell is implied to
"smell of sulfur", although as mentioned above sulfur is in fact
odorless. The "smell of sulfur" usually refers to either the odor
of hydrogen
sulfide, e.g. from rotten egg, or of burning sulfur, which
produces sulfur
dioxide, the smell associated with burnt matches.
Sulfur was known in China since the 6th
century BC, in a natural form that the Chinese had called
'brimstone', or shiliuhuang that was found in Hanzhong. By the
3rd century, the Chinese discovered that sulfur could be extracted
from pyrite. and the
Qualifications and Curriculum Authority for England and Wales
recommended its use in 2000.
In Latin, the word is variously written sulpur,
sulphur, and sulfur (the Oxford Latin Dictionary lists the
spellings in this order). It is an original Latin name and not a
Classical
Greek loan, so the ph variant does not denote the Greek letter
φ. Sulfur in Greek is thion (θείον), whence comes the prefix
thio-. The
simplification of the Latin word's p or ph to an f appears to have
taken place towards the end of the classical period, with the f
spelling becoming dominant in the medieval period.
Characteristics
At room temperature, sulfur is a soft bright yellow solid. Elemental sulfur has only a faint odor, similar to that of matches. The odor associated with rotten eggs is due to hydrogen sulfide () and organic sulfur compounds rather than elemental sulfur. Sulfur burns with a blue flame that emits sulfur dioxide, notable for its peculiar suffocating odor. Sulfur is insoluble in water but soluble in carbon disulfide and to a lesser extent in other non-polar organic solvents such as benzene and toluene. Common oxidation states of sulfur include −2, +2, +4 and +6. Sulfur forms stable compounds with all elements except the noble gases. Sulfur in the solid state ordinarily exists as cyclic crown-shaped S8 molecules.The crystallography of
sulfur is complex. Depending on the specific conditions, the sulfur
allotropes form
several distinct crystal
structures, with rhombic and monoclinic S8 best
known.
A noteworthy property of sulfur is that its
viscosity in its
molten state, unlike most other liquids, increases above
temperatures of 200 °C due to the formation of polymers. The molten sulfur
assumes a dark red color above this temperature. At higher
temperatures, however, the viscosity is decreased as
depolymerization occurs.
Amorphous or
"plastic" sulfur can be produced through the rapid cooling of
molten sulfur. X-ray
crystallography studies show that the amorphous form may have a
helical structure with
eight atoms per turn. This form is metastable
at room temperature and gradually reverts back to crystalline form.
This process happens within a matter of hours to days but can be
rapidly catalyzed.
Allotropes
Sulfur forms more than 30 solid allotropes, more than any other element. Besides S8, several other rings are known. Removing one atom from the crown gives S7, which is more deeply yellow than S8. HPLC analysis of "elemental sulfur" reveals an equilibrium mixture of mainly S8, but also S7 and small amounts of S6. Larger rings have been prepared, including S12 and S18. By contrast, sulfur's lighter neighbor oxygen only exists in two states of allotropic significance: O2 and O3. Selenium, the heavier analogue of sulfur can form rings but is more often found as a polymer chain.Isotopes
Sulfur has 18 isotopes, four of which are stable: 32S (95.02%), 33S (0.75%), 34S (4.21%), and 36S (0.02%). Other than 35S, the radioactive isotopes of sulfur are all short lived. 35S is formed from cosmic ray spallation of 40argon in the atmosphere. It has a half-life of 87 days.When sulfide minerals are precipitated,
isotopic equilibration among solids and liquid may cause small
differences in the δS-34 values of co-genetic minerals. The
differences between minerals can be used to estimate the
temperature of equilibration. The δC-13 and δS-34 of coexisting
carbonates and
sulfides can be used to determine the pH and oxygen fugacity of the ore-bearing
fluid during ore formation.
In most forest ecosystems, sulfate is
derived mostly from the atmosphere; weathering of ore minerals and
evaporites also contribute some sulfur. Sulfur with a distinctive
isotopic composition has been used to identify pollution sources,
and enriched sulfur has been added as a tracer in hydrologic studies.
Differences in the natural
abundances can also be used in systems where there is
sufficient variation in the 34S of ecosystem components. Rocky
Mountain lakes thought to be dominated by atmospheric sources
of sulfate have been found to have different δS-34 values from
lakes believed to be dominated by watershed sources of
sulfate.
Occurrence
Elemental sulfur can be found near hot springs
and volcanic regions in
many parts of the world, especially along the Pacific
Ring of Fire. Such volcanic deposits are currently mined in
Indonesia,
Chile, and
Japan.
Sicily is
also famous for its sulfur mines.
Significant deposits of elemental sulfur also
exist in salt domes
along the coast of the Gulf of
Mexico, and in evaporites in eastern Europe
and western Asia. The sulfur in these deposits is believed to come
from the action of anaerobic
bacteria on sulfate
minerals, especially gypsum, although apparently
native sulfur may be produced by geological processes alone,
without the aid of living organisms (see below). However,
fossil-based sulfur deposits from salt domes are the basis for
commercial production in the United
States, Poland, Russia, Turkmenistan,
and Ukraine. Sulfur
production through hydrodesulfurization
of oil, gas, and the Athabasca
Oil Sands has produced a surplus - huge stockpiles of sulfur
now exist throughout Alberta, Canada.
Common naturally occurring sulfur compounds
include the sulfide
minerals, such as pyrite (iron sulfide), cinnabar (mercury sulfide),
galena (lead sulfide),
sphalerite (zinc
sulfide) and stibnite
(antimony sulfide); and the sulfates, such as gypsum (calcium
sulfate), alunite
(potassium aluminium sulfate), and barite (barium sulfate). It
occurs naturally in volcanic emissions, such as from hydrothermal
vents, and from bacterial action on decaying sulfur-containing
organic matter.
The distinctive colors of Jupiter's
volcanic moon, Io, are from
various forms of molten, solid and gaseous sulfur. There is also a
dark area near the Lunar crater
Aristarchus
that may be a sulfur deposit.
Sulfur is present in many types of meteorites. Ordinary
chondrites contain on average 2.1% sulfur, and carbonaceous
chondrites may contain as much as 6.6%. Sulfur in meteorites is
normally present entirely as troilite (FeS), but other sulfides are
found in some meteorites, and carbonaceous chondrites contain free
sulfur, sulfates, and possibly other sulfur compounds.
Extraction and production
Extraction from natural resources
Sulfur is extracted by mainly two processes: the Sicilian process and the Frasch process. The Sicilian process, which was first used in Sicily, was used in ancient times to get sulfur from rocks present in volcanic regions. In this process, the sulfur deposits are piled and stacked in brick kilns built on sloping hillsides, and with airspaces between them. Then powdered sulfur is put on top of the sulfur deposit and ignited. As the sulfur burns, the heat melts the sulfur deposits, causing the molten sulfur to flow down the sloping hillside. The molten sulfur can then be collected in wooden buckets.The second process used to obtain sulfur is the
Frasch process. In this method, three concentric pipes are used:
the outermost pipe contains superheated water, which melts the
sulfur, and the innermost pipe is filled with hot compressed air,
which serves to create foam and pressure. The resulting sulfur foam
is then expelled through the middle pipe.
The Frasch process produces sulfur with a 99.5%
purity content, and which needs no further purification. The sulfur
produced by the Sicilian process must be purified by
distillation.
Production from hydrogen sulfide
Chemically
The Claus process is used to extract elemental sulfur from hydrogen sulfide produced in hydrodesulfurization of petroleum or from natural gas.Biologically
In the biological route, hydrogen sulfide (H2S) from natural gas or refinery gas is absorbed with a slight alkaline solution in a wet scrubber. Or the sulfide is produced by biological sulfate reduction. In the subsequent process step, the dissolved sulfide is biologically converted to elemental sulfur. This solid sulfur is removed from the reactor. This process has been built on commercial scale. The main advantages of this process are:- no use of expensive chemicals,
- the process is safe as the H2S is directly absorbed in an alkaline solution,
- no production of a polluted waste stream,
- re-usable sulfur is produced, and
- the process occurs under ambient conditions.
The biosulfur product is different from other
processes in which sulfur is produced because the sulfur is
hydrophillic. Next to straightforward reuses as source for sulfuric
acid production, it can also be applied as sulfur fertilizer.
Chemistry
Inorganic compounds
Hydrogen sulfide has the characteristic smell of rotten eggs. Dissolved in water, hydrogen sulfide is acidic and will react with metals to form a series of metal sulfides. Natural metal sulfides are common, especially those of iron. Iron sulfide is called pyrite, the so-called fool's gold. Pyrite can show semiconductor properties. Galena, a naturally occurring lead sulfide, was the first semiconductor discovered, and found a use as a signal rectifier in the "cat's whiskers" of early crystal radios.Many of the unpleasant odors of organic matter
are based on sulfur-containing compounds such as methyl and ethyl mercaptan, also used
to scent natural gas so that leaks are easily detectable. The odor
of garlic and "skunk stink" are also caused by
sulfur-containing organic compounds. Not all organic sulfur
compounds smell unpleasant; for example, grapefruit
mercaptan, a sulfur-containing monoterpenoid is responsible for
the characteristic scent of grapefruit.
Polymeric sulfur nitride has metallic properties
even though it does not contain any metal atoms. This compound also
has unusual electrical and optical properties. This polymer can be
made from tetrasulfur
tetranitride S4N4.
Phosphorus sulfides are useful in synthesis. For
example, P4S10 and its derivatives Lawesson's
reagent and
naphthalen-1,8-diyl 1,3,2,4-dithiadiphosphetane 2,4-disulfide
are used to replace oxygen from some organic molecules with
sulfur.
- Sulfides (S2−), a complex family of compounds usually derived from S2−. Cadmium sulfide (CdS) is an example.
- Sulfites (SO32−), the salts of sulfurous acid (H2SO3) which is generated by dissolving SO2 in water. Sulfurous acid and the corresponding sulfites are fairly strong reducing agents. Other compounds derived from SO2 include the pyrosulfite or metabisulfite ion (S2O52−).
- Sulfates (SO42−), the salts of sulfuric acid. Sulfuric acid also reacts with SO3 in equimolar ratios to form pyrosulfuric acid (H2S2O7).
- Thiosulfates(S2O32−).Sometimes referred as thiosulfites or "hyposulfites", Thiosulfates are used in photographic fixing (HYPO) as reducing agents. Ammonium thiosulfate is being investigated as a cyanide replacement in leaching gold.http://doccopper.tripod.com/gold/AltLixiv.html
- Sodium dithionite, , is the highly reducing dianion derived from hyposulfurous/dithionous acid.
- Sodium dithionate (Na2S2O6).
- Polythionic acids (H2SnO6), where n can range from 3 to 80.
- Peroxymonosulfuric acid (H2SO5) and peroxydisulfuric acids (H2S2O8), made from the action of SO3 on concentrated H2O2, and H2SO4 on concentrated H2O2 respectively.
- Sodium polysulfides (Na2Sx)
- Sulfur hexafluoride, SF6, a dense gas at ambient conditions, is used as nonreactive and nontoxic propellant
- Sulfur nitrides are chain and cyclic compounds containing only S and N. Tetrasulfur tetranitride S4N4 is an example.
- Thiocyanates contain the SCN− group. Oxidation of thiocyanoate gives thiocyanogen, (SCN)2 with the connectivity NCS-SCN.
Organic compounds
(R, R', and R are organic groups such as CH3):- Thioethers have the form R-S-R′''. These compounds are the sulfur equivalents of ethers.
- Sulfonium ions have the formula RR'S-'R'", i.e. where three groups are attached to the cationic sulfur center. Dimethylsulfoniopropionate (DMSP; (CH3)2S+CH2CH2COO−) is a sulfonium ion, which is important in the marine organic sulfur cycle.
- Thiols (also known as mercaptans) have the form R-SH. These are the sulfur equivalents of alcohols.
- Thiolates ions have the form R-S-. Such anions arise upon treatment of thiols with base.
- Sulfoxides have the form R-S(=O)-R′. The simplest sulfoxide, DMSO, is a common solvent.
- Sulfones have the form R-S(=O)2-R′. A common sulfone is sulfolane C4H8SO2.
See also Category:
sulfur compounds and organosulfur
chemistry
Applications
One of the direct uses of sulfur is in vulcanization of rubber, where polysulfides crosslink organic polymers. Sulfur is a component of gunpowder. It reacts directly with methane to give carbon disulfide, which is used to manufacture cellophane and rayon.Elemental sulfur is mainly used as a precursor to
other chemicals. Approximately 85% (1989) is converted to sulfuric
acid (H2SO4), which is of such prime
importance to the world's
economies that the production and consumption of sulfuric acid
is an indicator of a nation's industrial development.http://www.pafko.com/history/h_s_acid.html.
For example, more sulfuric acid is produced in the United
States every year than any other industrial chemical. The
principal use for the acid is the extraction of phosphate ores for
the production of fertilizer manufacturing. Other applications of
sulfuric acid include oil refining, wastewater processing, and
mineral extraction.
Sulfur compounds are also used in detergents, fungicides, dyestuffs, and agrichemicals.
In silver-based photography sodium and
ammonium thiosulfate
are used as "fixing agents."
Sulfur is an ingredient in some acne
treatments.
An increasing application is as fertilizer.
Standard sulfur is hydrophobic and therefore has to be covered with
a surfactant by bacteria in the ground before it can be oxidized to
sulfate. This makes it a slow release fertilizer, which cannot be
taken up by the plants instantly, but has to be oxidized to sulfate
over the growth season. Biologically produced sulfur particles are
naturally hydrophilic due to a biopolymer coating. This sulfur is
therefore easier to disperse over the land (via spraying as a
diluted slurry), and results in a faster release.
Sulfites, derived
from burning sulfur, are heavily used to bleach
paper. They are also used
as preservatives in dried fruit.
Magnesium
sulfate, better known as Epsom salts,
can be used as a laxative, a bath additive, an
exfoliant, a magnesium supplement for
plants, or a desiccant.
Specialized applications
Sulfur is used as a light-generating medium in the rare lighting fixtures known as sulfur lamps.Historical applications
In the late 18th century, furniture makers used molten sulfur to produce decorative inlays in their craft. Because of the sulfur dioxide produced during the process of melting sulfur, the craft of sulfur inlays was soon abandoned. Molten sulfur is sometimes still used for setting steel bolts into drilled concrete holes where high shock resistance is desired for floor-mounted equipment attachment points. Pure powdered sulfur was also used as a medicinal tonic and laxative. Sulfur was also used in baths for people who had fits.Fungicide
Sulfur is the only fungicide used in organically farmed apple production against the main disease apple scab under colder conditions. Sulfur is also a major fungicide in conventional culture of grapes, strawberry, many vegetables and several other crops. It has a good efficacy against a wide range of powdery mildew diseases. Sulfur is one of the oldest pesticides used in agriculture. In organic production sulfur is the most important fungicide used. Biosulfur (biologically produced elemental sulfur with hydrophillic characteristics) can be used well for these applications.Biological role
See sulfur cycle
for more on the inorganic and organic natural transformations of
sulfur.
Sulfur is an essential component of all living
cells.
Inorganic sulfur forms a part of iron-sulfur
clusters, and sulfur is the bridging ligand in the CuA site of cytochrome
c oxidase, a basic substance involved in utilization of oxygen
by all aerobic life.
Sulfur may also serve as chemical food source for
some primitive organisms: some forms of bacteria use hydrogen
sulfide (H2S) in the place of water as the electron donor in a primitive
photosynthesis-like
process in which oxygen is the electron receptor. The photosynthetic green and
purple sulfur bacteria
and some chemolithotrophs use
elemental oxygen to carry out such oxidization of hydrogen sulfide
to produce elemental sulfur (So), oxidation state = 0. Primitive
bacteria which live around deep ocean volcanic vents oxidize
hydrogen sulfide in this way with oxygen: see giant tube
worm for an example of large organisms (via bacteria) making
metabolic use of hydrogen sulfide as food to be oxidized.
The so-called sulfur
bacteria, by contrast, "breathe sulfate" instead of oxygen.
They use sulfur as the electron acceptor, and reduce various
oxidized sulfur compounds back into sulfide-- often into hydrogen
sulfide. They also can grow on a number of other partially oxidized
sulfur compounds (e. g. thiosulfate, thionates, polysulfides,
sulfite). These bacteria are responsible for the rotten egg smell
of some intestinal gases and decomposition products.
Sulfur is a part of many bacterial defense
molecules. For example, though sulfur is not a part of the lactam ring, it is a part of most
beta
lactam antibiotics, including the penicillins, cephalosporins, and
monobactams.
Sulfur is absorbed by plants via the roots from soil as the sulfate ion and reduced to sulfide before it
is incorporated into cysteine and other organic
sulfur compounds (see sulfur
assimilation for details of this process).
Sulfur is regarded as secondary nutrient although
plant requirements for sulfur are equal to and sometimes exceed
those for phosphorus. However sulfur is recognized as one of the
major nutrients essential for plant growth, root nodule formation
of legumes and plants protection mechanisms. Sulfur deficiency has
become widespread in many countries in Europe. Because atmospheric
inputs of sulfur will continue to decrease, the deficit in the
sulfur input/output is likely to increase, unless sulfur
fertilizers are used.
In plants and animals the amino acids
cysteine and methionine contain sulfur, as
do all polypeptides,
proteins, and enzymes which contain these amino
acids. Homocysteine
and taurine are other
sulfur-containing acids which are similar in structure, but which
are not coded for by DNA, and are not part
of the primary
structure of proteins. Glutathione is
an important sulfur-containing tripeptide which plays a role in
cells as a source of chemical reduction potential in the cell,
through its sulfhydryl (-SH) moiety. Many important cellular
enzymes use prosthetic groups ending with -SH moieties to handle
reactions involving acyl-containing biochemicals: two common
examples from basic metabolism are coenzyme A and
alpha-lipoic
acid.
Disulfide
bonds (S-S bonds) formed between cysteine residues in peptide
chains are very important in protein assembly and structure. These
strong covalent bonds between peptide chains give proteins a great
deal of extra toughness and resiliency. For example, the high
strength of feathers and hair is in part due to their high content
of S-S bonds and their high content of cysteine and sulfur (eggs
are high in sulfur because large amounts of the element are
necessary for feather formation). The high disulfide content of
hair and feathers contributes to their indigestibility, and also
their odor when burned.
Traditional medical role for elemental sulfur
In traditional medical skin treatment which predates modern era of scientific medicine, elemental sulfur has been used mainly as part of creams to alleviate various conditions such as psoriasis, eczema and acne. The mechanism of action is not known, although elemental sulfur does oxidize slowly to sulfurous acid, which in turn (though the action of sulfite) acts as a mild reducing and antibacterial agent.Precautions
Carbon disulfide, carbon oxysulfide, hydrogen sulfide, and sulfur dioxide should all be handled with care.Although sulfur
dioxide is sufficiently safe to be used as a food
additive in small amounts, at high concentrations it reacts
with moisture to form sulfurous
acid which in sufficient quantities may harm the lungs, eyes or other tissues.
In organisms without lungs such as insects or plants, it otherwise
prevents respiration.
Hydrogen
sulfide is toxic.
Although very pungent at first, it quickly deadens the sense of
smell, so potential victims may be unaware of its presence until
death or other symptoms occur.
Environmental impact
The burning of coal and/or petroleum by industry and power plants generates sulfur dioxide (SO2), which reacts with atmospheric water and oxygen to produce sulfuric acid (H2SO4). This sulfuric acid is a component of acid rain, which lowers the pH of soil and freshwater bodies, sometimes resulting in substantial damage to the environment and chemical weathering of statues and structures. Fuel standards increasingly require sulfur to be extracted from fossil fuels to prevent the formation of acid rain. This extracted sulfur is then refined and represents a large portion of sulfur production. In coal fired power plants, the flue gases are sometimes purified. In more modern power plants that use syngas the sulfur is extracted before the gas is burned.See also
References
External links
sulfur in Afrikaans: Swawel
sulfur in Arabic: كبريت
sulfur in Asturian: Azufre
sulfur in Guarani: Itaysy
sulfur in Azerbaijani: Kükürd
sulfur in Bengali: গন্ধক
sulfur in Belarusian: Сера
sulfur in Bosnian: Sumpor
sulfur in Bulgarian: Сяра
sulfur in Catalan: Sofre
sulfur in Czech: Síra
sulfur in Corsican: Zolfu
sulfur in Welsh: Sylffwr
sulfur in Danish: Svovl
sulfur in German: Schwefel
sulfur in Estonian: Väävel
sulfur in Modern Greek (1453-): Θείο
sulfur in Erzya: Палыкандал
sulfur in Spanish: Azufre
sulfur in Esperanto: Sulfuro
sulfur in Basque: Sufre
sulfur in Persian: گوگرد
sulfur in French: Soufre
sulfur in Friulian: Solfar
sulfur in Irish: Sulfar
sulfur in Manx: Sulfur
sulfur in Galician: Xofre
sulfur in Korean: 황
sulfur in Armenian: Ծծումբ
sulfur in Hindi: गन्धक
sulfur in Upper Sorbian: Syrik
sulfur in Croatian: Sumpor
sulfur in Ido: Sulfo
sulfur in Indonesian: Belerang
sulfur in Icelandic: Brennisteinn
sulfur in Italian: Zolfo
sulfur in Hebrew: גופרית
sulfur in Javanese: Welirang
sulfur in Swahili (macrolanguage): Sulfuri
sulfur in Haitian: Souf
sulfur in Kurdish: Kibrît
sulfur in Latin: Sulphur
sulfur in Latvian: Sērs
sulfur in Luxembourgish: Schwiefel
sulfur in Lithuanian: Siera
sulfur in Limburgan: Solfer
sulfur in Lojban: sliri
sulfur in Hungarian: Kén
sulfur in Macedonian: Сулфур
sulfur in Malayalam: ഗന്ധകം
sulfur in Maori: Pungatara
sulfur in Marathi: सल्फर
sulfur in Mongolian: Хүхэр
nah:Tlequiquiztlālli
sulfur in Dutch: Zwavel
sulfur in Japanese: 硫黄
sulfur in Norwegian: Svovel
sulfur in Norwegian Nynorsk: Svovel
sulfur in Novial: Sulfre
sulfur in Occitan (post 1500): Sofre
sulfur in Uzbek: Oltingugurt
sulfur in Low German: Swevel
sulfur in Polish: Siarka
sulfur in Portuguese: Enxofre
sulfur in Romanian: Sulf
sulfur in Quechua: Salina
sulfur in Russian: Сера
sulfur in Albanian: Squfuri
sulfur in Sicilian: Sùrfuru
sulfur in Simple English: Sulfur
sulfur in Slovak: Síra
sulfur in Slovenian: Žveplo
sulfur in Serbian: Сумпор
sulfur in Serbo-Croatian: Sumpor
sulfur in Sundanese: Walirang
sulfur in Finnish: Rikki
sulfur in Swedish: Svavel
sulfur in Tamil: கந்தகம்
sulfur in Telugu: గంధకము
sulfur in Thai: กำมะถัน
sulfur in Vietnamese: Lưu huỳnh
sulfur in Turkish: Kükürt
sulfur in Ukrainian: Сірка
sulfur in Vlaams: Sulfer (element)
sulfur in Yiddish: שװעבל
sulfur in Contenese: 硫
sulfur in Chinese: 硫